The Invisible Life of Soil and Urban Stream Restoration

by:

D. Lauren Ross, Ph. D., P. E.
Glenrose Engineering, Inc.
512.326.8880
glenrose.com
The Central Role of Soil Biology in the Web of Life
Soil Organic Material

- Cyst
- Amoeba
- Flagellate
- Bacterial Colonies
- Nematode
- Ciliate
- Clay-Organic Matter Complex
- Decomposing Plant Cells
- Fungal Hyphae and Spores
- Actinomysete hyphae and Spores
Soil Biology Function in Riparian Zones

Holding and Cycling Nutrients

Shoot Biomass after 77 Days

- Sterile Soil
- Soil with Bacteria
- Soil with Bacteria and Nematodes
Soil Biology Function in Riparian Zones

Improved Soil Structure: Infiltration and Water-Holding Capacity
Soil Biology Function in Riparian Zones

Disease Suppression
For example: Earthworm produce an enzyme in their digestive tracts that kill Escherichia coli.
Soil Biology Function in Riparian Zones

Pollution
Degradation
Preserving Soil Biology During Riparian Restoration

Limit Soil Compaction
 – Tight Limits of Construction
 – Restrict The use of Heavy Equipment
Preserving Soil Biology During Riparian Restoration

Maintain Optimum Soil Moisture

– Good Drainage
– Limit Stock-Piling
– Use De-Chlorinated Water
Preserving Soil Biology During Riparian Restoration

Appropriate Soil Amendments

– Finely-Ground Carbon
– Well-Aged Compost
Preserving Soil Biology During Riparian Restoration

Biological Inoculants

- Should be tuned to riparian ecology
- Most research is in agricultural applications
Soil Measures of Riparian Biological Function

<table>
<thead>
<tr>
<th>Description</th>
<th>Character</th>
<th>Texture</th>
<th>Solvita ppm</th>
<th>%OM Humus</th>
<th>pH</th>
<th>EC mmhos/cm</th>
<th>NO3 lbs/acre</th>
<th>NO3 mg/Kg</th>
<th>P2O5 lbs/acre</th>
<th>P2O5 mg/Kg</th>
<th>K (H2O) ppm</th>
<th>K (CO2) ppm</th>
<th>Na (H2O) ppm</th>
<th>Na (CO2) ppm</th>
<th>Ca (H2O) ppm</th>
<th>Ca (CO2) ppm</th>
<th>Mg (H2O) ppm</th>
<th>Mg (CO2) ppm</th>
<th>Zn ppm</th>
<th>Fe ppm</th>
<th>Mn ppm</th>
<th>Cu ppm</th>
<th>Total Bacteria ug/g</th>
<th>Total Fungi ug/g</th>
<th>Hyphal Diameter um</th>
<th>TF/TB</th>
<th>Actino Bacteria ug/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woodland Reference</td>
<td>5-</td>
<td>53.95</td>
<td>5.20</td>
<td>7.8</td>
<td>0.73</td>
<td>26</td>
<td>13</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>25</td>
<td>16</td>
<td>54</td>
<td>140</td>
<td>1376</td>
<td>5</td>
<td>48</td>
<td>1.31</td>
<td>4.73</td>
<td>6.18</td>
<td>0.2</td>
<td>713</td>
<td>976</td>
<td>2.85</td>
<td>1.37</td>
<td>6.59</td>
<td></td>
</tr>
<tr>
<td>Wildflower Reference</td>
<td>5+</td>
<td>5.13</td>
<td>0.30</td>
<td>7.7</td>
<td>7.21</td>
<td>5</td>
<td>2.5</td>
<td>4</td>
<td>2</td>
<td>51</td>
<td>62</td>
<td>31</td>
<td>104</td>
<td>579</td>
<td>1357</td>
<td>25</td>
<td>69</td>
<td>0.32</td>
<td>4.42</td>
<td>2.36</td>
<td>0.31</td>
<td>694</td>
<td>591</td>
<td>2.75</td>
<td>0.85</td>
<td>4.44</td>
<td></td>
</tr>
<tr>
<td>Area 9 Degraded</td>
<td>5+</td>
<td>7.6</td>
<td>1.55</td>
<td>7.77</td>
<td>1.91</td>
<td>9</td>
<td>4.5</td>
<td>5</td>
<td>2.5</td>
<td>21</td>
<td>41</td>
<td>26</td>
<td>68</td>
<td>216</td>
<td>1358</td>
<td>7</td>
<td>43</td>
<td>0.52</td>
<td>6.03</td>
<td>5.47</td>
<td>0.47</td>
<td>641</td>
<td>440</td>
<td>2.7</td>
<td>0.69</td>
<td>6.59</td>
<td></td>
</tr>
<tr>
<td>Custer's Degraded</td>
<td>5-</td>
<td>48.59</td>
<td>4.30</td>
<td>7.6</td>
<td>0.79</td>
<td>26</td>
<td>13</td>
<td>25</td>
<td>12.5</td>
<td>61</td>
<td>166</td>
<td>20</td>
<td>55</td>
<td>63</td>
<td>1307</td>
<td>8</td>
<td>67</td>
<td>4.51</td>
<td>11.49</td>
<td>6.03</td>
<td>0.76</td>
<td>625</td>
<td>622</td>
<td>2.75</td>
<td>1.00</td>
<td>9.77</td>
<td></td>
</tr>
<tr>
<td>N of 24th Degraded</td>
<td>5+</td>
<td>5.14</td>
<td>0.80</td>
<td>8</td>
<td>0.75</td>
<td>7</td>
<td>3.5</td>
<td>54</td>
<td>27</td>
<td>6</td>
<td>25</td>
<td>30</td>
<td>67</td>
<td>116</td>
<td>1682</td>
<td>6</td>
<td>78</td>
<td>0.13</td>
<td>7.32</td>
<td>4.44</td>
<td>0.55</td>
<td>503</td>
<td>288</td>
<td>2.85</td>
<td>0.57</td>
<td>2.58</td>
<td></td>
</tr>
<tr>
<td>Under Oak Degraded</td>
<td>2-</td>
<td>36.23</td>
<td>1.00</td>
<td>7.6</td>
<td>0.76</td>
<td>15</td>
<td>7.5</td>
<td>40</td>
<td>20</td>
<td>49</td>
<td>102</td>
<td>22</td>
<td>64</td>
<td>106</td>
<td>1066</td>
<td>9</td>
<td>74</td>
<td>1.93</td>
<td>5.13</td>
<td>2.67</td>
<td>0.43</td>
<td>554</td>
<td>491</td>
<td>2.85</td>
<td>0.89</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Soil Measures of Riparian Biological Function

<table>
<thead>
<tr>
<th>Description</th>
<th>Character</th>
<th>Solvita CO2 Burst Test ppm</th>
<th>%OM Humus</th>
<th>Total Bacteria ug/g</th>
<th>Total Fungi ug/g</th>
<th>TF/TB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woodland</td>
<td>Reference</td>
<td>53.95</td>
<td>5.20</td>
<td>713</td>
<td>976</td>
<td>1.37</td>
</tr>
<tr>
<td>Wildflower</td>
<td>Reference</td>
<td>5.13</td>
<td>0.30</td>
<td>694</td>
<td>591</td>
<td>0.85</td>
</tr>
<tr>
<td>Area 9</td>
<td>Degraded</td>
<td>7.6</td>
<td>1.55</td>
<td>641</td>
<td>440</td>
<td>0.69</td>
</tr>
<tr>
<td>Custer's</td>
<td>Degraded</td>
<td>48.59</td>
<td>4.30</td>
<td>625</td>
<td>622</td>
<td>1.00</td>
</tr>
<tr>
<td>N of 24th</td>
<td>Degraded</td>
<td>5.14</td>
<td>0.80</td>
<td>503</td>
<td>288</td>
<td>0.57</td>
</tr>
<tr>
<td>Under Oak</td>
<td>Degraded</td>
<td>36.23</td>
<td>1.00</td>
<td>554</td>
<td>491</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Soil Measures of Riparian Biological Function

Solvita CO2 Burst Test

ppm
Soil Measures of Riparian Biological Function

%OM Humus

Reference
Reference
Degraded
Degraded
Degraded
Degraded

0.00
1.00
2.00
3.00
4.00
5.00
6.00
Soil Measures of Riparian Biological Function

Total Fungi
ug/g

Reference
Reference
Degraded
Degraded
Degraded
Degraded
Soil Measures of Riparian Biological Function

Total Bacteria
ug/g

- Reference
- Reference
- Degraded
- Degraded
- Degraded
- Degraded
Soil Measures of Riparian Biological Function

![TF/TB Graph](image-url)