Enlargement and Instability of Stream Channels in Austin, Texas: When to Restore?

Michelle Adlong, E.I.T. | City of Austin Watershed Protection Department
Urban Riparian Symposium | February 12, 2015
What type of restoration is most appropriate?
A STREAM IN EQUILIBRIUM

Lane’s Balance:

\[
Q_s \times D_{50} \propto Q_w \times S
\]

- **Sediment Discharge** \(Q_s\) × **Particle Size** \(D_{50}\)
- **Flow Discharge** \(Q_w\) × **Stream Slope** \(S\)

Sediment Load
Stream Power

Source: ASCE
Understanding a stream’s stage in channel evolution helps select appropriate restoration techniques.

- Passive vs. active restoration
- “Watershed restoration” another approach
• Original stable channel: sediment load and stream power are in equilibrium
• Typically channel is vegetated and well-connected to floodplain

Restoration Method:
- Passive
- Active
Watershed development (ΔQ_w) or channelization (ΔS) typically increases stream power, interrupts equilibrium.

Response: Incision and headcutting.
CEM STAGE III: WIDENING

- Incision leads to steep, overly high banks
- Altered hydrology increases shear forces on banks
- Result: Bank failures, erosion, widening

Source: Fish Creek Coalition

Restoration Method:
- Passive
- Active
CEM STAGE IV: AGGRADATION AND PLANFORM ADJUSTMENT

- Decrease in stream power due to widening
- Deposition of sediment carried from upstream degrading reaches causes aggradation, formation of bars

Source: Fish Creek Coalition

Restoration Method:
- Passive
- Active
CEM STAGE V: QUASI-EQUILIBRIUM

- A new inset floodplain and bankfull channel forms in the aggraded channel
- Evolution process takes many years, even after disturbance in the watershed has stabilized
- Stable does not imply static flowpath

Restoration Method:
- Passive
- Active

Source: Fish Creek Coalition
Channel Enlargement Study

- 1 to 3 cross sections at 45 sites in Austin watersheds
- Sites were re-surveyed in 2015 (in progress)

Tannehill Creek at Givens Park in 2015
Survey Procedure

- Select cross section location at wastewater lines
- Survey cross sections in 1997 and 2015

1. Wastewater line alignment
2. Perpendicular & downstream of wastewater line
- Note locations of flowline, active bankfull channel, top of banks
- Observe channel type, channel features
DEFINING CHANNEL GEOMETRY
WATERSHED EROSION ASSESSMENT
GEOMORPHIC SURVEYS

Calculations

Channel Geometry
- Active Bankfull Elevation, z_{abf}
- Top of Bank Elevation, z_{top}
- Cross Sectional Area, A
- Top Width, W
- Flow Depth, D
- Hydraulic Depth, D_{Hyd}
- Width : Depth Ratio, W/D_{Hyd}

\[Re = \frac{A_t}{A_{t_0}} \]
\[\dot{Re} = \frac{Re_t - Re_{t_0}}{t - t_0} \]
\[IF = \frac{D_t}{D_{t_0}} \]
\[IF_{Hyd} = \frac{D_{Hyd,t}}{D_{Hyd,t_0}} \]

Change over Time
- Enlargement Ratio, Re
- Normalized Enlargement Rate, \dot{Re}
- Incision Factor, IF
2015 SURVEYS

2015 Survey Locations (So Far)

1997 Survey Locations
PRELIMINARY RESULTS

Enlargement Ratio over Time
(Reference: Active Bankfull)
Incision Factor
(Hydraulic depths taken from geometric top of bank)
By Watershed
Width: Hydraulic Depth Ratio over Time
By Watershed
PRELIMINARY RESULTS

Width : Hydraulic Depth Ratio over Time
By Channel Type
Section 18

Approx. 2500 ft upstream of Cameron Road

- Bedrock bottom channel
- Mowed on left side, natural on right

Looking downstream through section
Section 54

50' D/S of Confluence with Tannehill Tributary in Givens Park
- Initial downcutting and widening
- Erosion of steep bluff on right bank
- Reestablishment of inset channel

Looking downstream through section
Section 83

Behind Lot 110 off of England ROW

- Clearing of banks
- Widening
- Possible meandering of bend
- Stormwater infrastructure

Looking upstream through section
CONCLUSIONS

- Development disturbs channel equilibrium, sets in motion years of channel evolution.
- Geometry of channel also depends on stream type.
- Restoration projects should evaluate stage of channel evolution as well as other geomorphic factors on a site by site basis.
- Passive restoration alone could be undermined if channel instability is not taken into account.
- Channel geometry is one, but not the only, way to evaluate channel stability.
THANK YOU

Clayton Ernst
Sean Thompson
Chris Adams
Morgan Byars
Stephen Davis
TANNEHILL BRANCH ENLARGING SECTION

Section 53

Givens Park upstream of confluence with tributary
- Outside of bend
- Mowed to top of bank
- Informal trail

Looking downstream through section