

Tľ

Regional

Water

District

Updates from the solar field: a follow-up to 2023's solar FRODO

2025 Urban Riparian Symposium Katie Myers, Rural Programs Supervisor

Solar Outlook: TRWD Watersheds

- Relatively flat and unforested landscapes
- Near major metroplex and transmission infrastructure

Costs and Benefits of Solar Development

- Long term income source for farmers and ranchers
- Temporary influx of jobs
- Kickbacks such as community improvement projects
- Prevents more intensive forms of development

Costs and Benefits of Solar Development

- Runoff and erosion concerns during construction and postconstruction
- Use of chemical vegetation management methods necessary in some areas
- Potential for permanent loss of quality habitat, range, or farmland

What Water Pros Want to Know

2023 Texas Riparian Association Urban Riparian Symposium discussion/survey highlights: commonly asked questions

What is the effect on hydrograph/runoff?

What BMPs are working on site?

What are barriers to BMP implementation?

Solar panel designs to reduce hydrological change? Who can best regulate/how to involve different levels of gov't?

Solar Outlook: Texas

Texas is #2 in current solar and #1 in growth outlook over next 5 years

Large tracts of land, plentiful sunshine, and open energy market

Texas Annual Solar Installations

protection

- Measures used during construction, post-construction, and longterm maintenance are largely determined on a state basis
- Legislative and legal battles
 - Counties cannot outright ban wind or solar
 - Last session, attempted to pass a bill that would increase regulatory burden on solar
 - Pros (higher environmental impact assessment regs) vs cons (disincentive for growing renewables sector)
 - Biden 2030 energy goals vs Trump administration goals, TBD

- Hydrological and ecological effects will vary
 - Soil types, climatic regimes, slopes, light-limited vs waterlimited environments, etc.
 - Large variations in design of panels and fields and long-term management regimes

- Current research efforts underway in Texas (recently completed or ongoing):
 - TAMU-Kingsville study on native seed mixes for revegetation under panels (Dr. Tony Falk laboratory)
 - TWRI (TAMU) water quality study above and below a new solar development (Dr. Lucas Gregory and team)
 - Baylor University runoff study above and below a few area solar developments (Dr. Ryan McManamay laboratory)

- Resources for landowners
 - Increasing availability of resources for landowners and natural resource professionals to advocate for responsible solar
 - NRCS, American Farmland Trust
- End goal: have scientifically-backed, economically reasonable BMPs for landowners, developers, and natural resource professionals to reference to guide responsible growth of solar energy

Primary Goals of Potential BMPs

Soil health management

Minimize hydrological impact

Maintain Ground Cover

- Double seeding/preseeding
- Keep cover during construction
- Use natives where possible but be mindful of establishment times
- Prioritize native buffers around panel array areas

Soil Health Management

- Know your local soils
- Maintain long-term ag viability
- Maintain carefully managed ag use where appropriate (grazing, cropping)

Efficiency Increases Over 60% 80% Wheat 80% Solar Electricity 1 Hectare + 80% Wheat 80% Solar Electricity 80% Solar Electricity 1 Hectare 1 Hectare

Combined Land Use On 2 Hectare Cropland:

Minimize Hydrological Impact

- Minimize grading during construction
- Generous riparian buffers/setbacks
- Appropriate stormwater infrastructure where needed
- Panel characteristics tilt and spacing

protection

Barriers to BMP Implementation

Making the case for costeffectiveness

- 3 pathways:
 - "good actor" image
 - Policy incentives (punishment/reward)
 - Solid cost savings analysis

Need for empirical research on hydroecological effects protectio

- Research is not keeping pace with development
- Responses of soil, vegetation, and hydrology to various methods can differ greatly between regions

Barriers to BMP Implementation

Failure to include local natural resources experts in planning and development stages

- Rigidity in project development and execution processes
- Need for greater education and empowerment of landowners and natural resource professionals considering solar leases

Cultivating a mindset of holistic environmental and community benefit

- Maximizing solar profit often means minimizing other productive uses
- Fold in other environmental services values

Resources

- ► U.S. Energy Information Administration Dashboard
- ERCOT Interconnection Report
- Solar Energy Industries Association
- AgriSolar Clearinghouse by National Center for Appropriate Technology

