

Applied Fluvial Geomorphology

River Processes In the Metroplex Peter M. Allen, John Dunbar, Jeff Arnold & Halff Engineering

In nat book litt

In nature's infinite book of secrecy, a little I can read.

Or What is Fluvial Geomorphology?

William Shakespeare

Our History began Near Rivers

4.4 Million Years Ago Floodplain Ethiopia

Our Cites Were Located by Cows and Rivers

Our Cites Were Located by Rivers... and Cows

Hard Rock Crossings: Limestone and Rivers

River of Dreams

Susan O. Stranahan

A RIVER RUNS THROUGH IT and Other Stories

Norman Maclean

A Doubtful River Robert daws Peter GOIN MARY WEBB

SPUNKY BOTTOMS

RESTORATION OF A

BIG-RIVER FLOODPLAIN

URBAN RIVERS

Remaking Rivers, Cities, and Space in Europe and North America

EDITED BY Stéphane Castonguay and Matthew Evenden

We wrote about rivers

- 416 with River Names on Amazon
- Most Popular Hucklberry Finn

We started out with Natural Rivers

- 3.5 million miles streams in Continental US
- Log jams and beavers

Dryland Rivers:

HYDROLOGY AND GEOMORPHOLOGY OF SEMI-ARID CHANNELS

EDITED BY L. J. BULL AND M. J. KIRKBY

EDITED BY DAIZO TSUTSUMI AND JONATHAN B. LARONNE

Rivers Over Rock

Fluvial Processes in Bedrock Channels

Keith J. Tinkler Ellen E. Wohl Editors

From Rock to Dryland Rivers

And...We began screwing things up

- Merritts, et. al, (2015) 65,000 mill dams
- 85,000 Dams
- 2,000,000 ponds
- 1997 channelized 20,000 miles

Fluvial Processes in

Geomorphology

Luna B. Leopold

Studies began in detail in 1960's

SECOND EDITIO

Then APPLIED

We found out rivers have a complex history

- Rivers and landscapes have a history
- Very complex
- We are looking at a very short period time (Clovis Points man at 10,000 years)
- But, recent changes can also be dramatic

We Quantified Rivers and Found.....

Order Ave. Length Total Length				Drainage Area
1	1,570,000	1.6	2,510,000	2.6
2	350,000	3.7	1,300,000	12.2
3	80,000	8.8	670,000	67
4	18,000	19	350,000	282
5	4,200	45	190,000	1,340
6	950	102	98,000	6,370
7	200	235	48,000	30,300
8	41	540	22,999	144,000
9	8	1,240	9,900	684,000
10	1	2,880	2,880	3,240,000

Of approximately 5,200,000 km of streams; About 73 % by length 1-2 Order

Field Operations Manual for Assessing the Hydrologic Permanence and Ecological Condition of Headwater Streams

Most are Headwater Streams

- Most are small and quite easy to screw up.
- About 2 million Headwater Streams

Processes tied to a Changing Climate

And Changing Land Use

And Controlling Variables

Thorne, 1997...Rosgen...1985

Example 1. Landuse Impacts in Blackland Prairie

- Shale and Limestone
- Vertisols and Mollisols
- Home >40 percent States
 Population
- *I-35 Growth Corridor*

Westward Migration: 1890-1955

Clearing the Prairie

Runoff Curve Number

Wolman Revisited

M, GORDON WOLMAN

SCHEMATIC SEQUENCE: LAND USE, SEDIMENT YIELD

AND CHANNEL RESPONSE

FROM A FIXED AREA

Landscape Metamorphosis

First Flush

USDA Watershed Program

NRCS has assisted communities build more than 11,000 dams in 2000 Watershed Projects in 47 States since 1948

Post Flush Changes

Growth up to 400,000 year in Texas.

For each 1000 people from 250-500 acres land; or up to 300 square miles

SIR 2006-5101

Urbanization

Wolman Revisited

M, GORDON WOLMAN

Second Flush

Urbanization Fast...Rivers React Slower

Reference Location Years from urban development \rightarrow U.S. Denver¹ Graf 1975 < 2 Philadelphia² yes Hammer 1972 ~ 30 > 4 5-7 Wolman 1967 Baltimore Leopold 1973 Maryland 13 $> 20^{1}$ no Fox 1976 Maryland³ 1-50 no $> 40^{1}$ Connecticut⁴ Arnold et al. 1982 no S. California⁵ > 50 Trimble 1997 no Chin Fountain Hills. > 30[‡] no & Gregory 2001 Arizona Puget Sound. Henshaw 1-2 decades 6 yes; 6 no & Booth 2000 Washington⁶

Disturbance fast....relaxation time slow 30-50 years+

Urban transformation of river landscapes in a global context

Anne Chin*

 $T_{90}=2.3/k$ k=.02-.11 115-21 yrs. Julien (2014)

Hierarchy Impacts: Landuse and Streams Dallas: Type I

Type 1 Natural to Urbanized

Oops!!....Hill, et. al. (2018) indicates these small catchments are worth about INT \$31 million/yr in ecosystem services ...yep covering up some **\$\$\$**

Type II: Natural to Urban

Top of Bank

32 ft. to House

Mean Dog

Soil

Laminated Silty Beds Woodbine Formation

Sandier, More Resistant Bed Woodbine Fm.

Woodbine Fm. In Channel Bed

Stream Bank Failures (1 Year)

Estimated Repair: \$300,000 per lot

Reed and Associates
Type III

DA = 10 to 150 sq. miles Floodplain= 200 to 1000 feet

Type IV

DA = 150 sq. mi. + Floodplain = 1000-6000'

Type IV

Dallas: Pre Levee

FAIRCHILD AERIAL SURVEY, INCOALLAS, TEXAS.

Improvement District-Central and Southern Section

The district extends on the south to the curved highway crossing the district in the center of the photograph. The portion of the district along the railroads on the east to be developed industrially, the westerly portion for residential and suburban retail purposes.

Old to Proposed

SO...We needed to figure out how to "fix" rivers?

And we looked for Guidance.....

GUIDANCE FOR STREAM RESTORATION

Illinois River, North Park, Colorado

Quantification: Lane

- Sediment Discharge (Qs)
- Median grain size of bed material (D50)
- Dominant Discharge or Streamflow (Q)
- Thalweg or Energy Slope (S)

And finally began to think about Ecosystems

What is a "healthy" stream ecosystem?

- Bed stability & diversity 1.
- Sediment transport balance 2.
- 3. In-stream habitat & flow diversity
- Bank stability (native plant roots) 4.
- 5. Riparian buffer (native streamside forest)

	Table 20. TXRAM Stream Metrics by Core Element	
Active floodplain	Core Elements	Metrics
		Floodplain Connectivity
7. Healthy watershed	Channel Condition	Bank Condition
Agreement regarding the variables		Sediment Deposition
	Riparian Buffer Condition	Riparian Buffer
	In-stream Condition	Substrate Composition
		In-stream Habitat
	Hydrologic	Flow Regime

Core Elements	Metrics	
Channel Condition	Floodplain Connectivity	
	Bank Condition	
	Sediment Deposition	
Riparian Buffer Condition	Riparian Buffer	
In-stream Condition	Substrate Composition	
	In-stream Habitat	
Hydrologic Condition	Flow Regime	
	Channel Flow Status	

Example 2: Denton Creek; A River in Transition...

- Urbanization
- Dam
- Channelization
- Levee Construction
- Channel Erosion
- Homeowner Distress

• This River has Had Everything Thrown At It.

Urbanization

Population growth rate 2020 to 2070 (percent change)

15

> 200 increase

35

66

100-200 increase

- < 10 increase
- Interstate highways

TW/DD /2017)

Four Dams

Source: Halff Assoc., 2017

Source: Halff Assoc., 2017

Recurring Costs \$\$\$\$

NCHRP 853

Emergency Spillway
Dam Release Channel/Denton Creek
Sediment Supply Reach
Levee District

Supply Reach

Source: Halff Assoc., 2017

(Simons and Li, 1981)

Upstream

Tree Falls due to Toe Erosion and Degradation= Log Jams

Comparison Widths Upstream and Downstream of Denton Tap

Old Denton Creek (Levee District) Riparian to channel bottom, and narrower width, depth. (Fill from cutoff) Denton Creek Upstream Denton Tap: Wider, deeper, tree falls, undercut banks, Stage III CEM Model

Emergency Spillway
Dam Release Channel/Denton Creek
Sediment Supply Reach
Levee District

ESTABLISHED: End of Knickpoint Migration

C)

Downstream

View Upstream: Natural River

Looked at Watershed Future Q?

Land Cover	Area (%)	Area (km²)	
Agriculture	18.00%	323.88	
Development	11.55%	207.88	
Forest	13.80%	248.32	
Open Water	2.05%	36.87	
ShrubScrubGrass	54.12%	973.64	
SnowlceBarren	0.15%	2.64	
Wetland	0.33%	5.86	

Mock (2016)

SWAT Model Run to Determine Future Discharge Change Land Use

Q Flow Duration: Dam Operation Lessens Change

Temporal Flow Durations USGS 08055000

Looked At Erosion...Causes Tree Loss Widening.....But What Rate?

Rutherfurd (2007)

Erosion_(cm/hr/Pa) = Kd (Te-Tc)

Stream Force "Te"=9810*R*S

Resisting: Erosion Rate and Critical Tractive Force

JET TEST ERODIBILITY: RESULTS

Looked at SEDIMENT: Fine Sand 0.176mm

Supply Reach

Bedload Transport

$$C = 7115c_f \left(F_g - F_{g0}\right)^{1.978} S^{0.6601} \left(\frac{r}{D_{50}}\right)^{-0.3301}$$

CSR Uses Brownlie Equation (1981)

Scaled Sand Movement in Levee District

Mean Movement= 1.56 ft/day. Std Dev. = 1.15 Minimum=0.47 ft/day Maximum= 3.375 ft/day

Infers: Approximately 8 years to Fill from MacArthur to Old Denton

Literature Rates Support Assessment

Mean Water Velocity and Mean Sand Speed 0.19mm (Leopold, 1963)

CSR Uses Brownlie Equation (1981)

Summary from Supply Reach					
Discharge (cfs)	Probabilty	Qs (ppm)	Qs (tons/day)	Effectiveness	
155.8	0.8483	693.7	291.8	247.54	
467.4	0.0367	1239.1	1563.7	57.45	
779.0	0.0215	1547.9	3255.8	69.95	
1090.6	0.0232	4226.9	12446.7	289.05	
1402.2	0.0204	4519.5	17110.8	349.38	
1713.8	0.0275	4832.3	22360.6	615.87	
2025.4	0.0102	5102.5	27903.8	284.88	
2337.0	0.0012	5357.1	33802.9	41.72	
2648.6	0.0002	5527.7	39530.2	6.65	
2960.2	0.0003	5714.6	45674.8	15.37	
3271.8	0.0002	5844.9	51633.7	8.69	
3583.4	0.0002	5967.2	57734.2	9.72	
3895.0	0.0001	6086.1	64004.9	7.18	
4206.6	0.0007	6205.1	70476.6	51.39	

CSR: SWAT Flow Duration and Channel Dimensions

Options Being Considered

Sand Trap (.75)

Restablish old channel to route bed material (.25)

2

Dredging until upstream stabilizes (1)

3

Sediment Trap

Reattach Old Channel to Route Sand Bedload

Article

Full Spectrum Analytical Channel Design with the Capacity/Supply Ratio (CSR)

Travis R. Stroth¹, Brian P. Bledsoe^{2,*} and Peter A. Nelson¹

REM: Sediment Trapped Upstream:

Homes Built on Cutbank

Problems

Solutions: "Castle Approach"

2-D Flow and Shear

Shear

River Station

Soil

Very Erodible When Cover Removed

Briaud (2009) Channel Meander Rates Literature

$$M = \alpha' \left(\frac{v}{v_c}\right)^{\beta} \times v_c \times \Delta t$$

<2 to 10 ft./yr. Lateral Erosion ~SWAT Flow</pre>

47 Years of River History: 1968-2015

Meyer-Peter and Mueller Limiting Slope

Note: fill in values that are underlined, calculated results are in bold red

Note: The equilibrium slope of a channel is defined as the slope at which the sediment transport capacity of the reach is in balance with the sediment transported into the reach. If the sediment transport capacity were to exceed the sediment supply, channel bed degradation will occur until the channel bed slope is reduced so much that the boundary shear stress is less than what is needed to mobilize the bed material an armor layer forms. This new, lower slope may be called the equilibrium slope, S_{eq}.

NEESME Nov, 2005

Potential Downcutting?

Erosion Hazard Zone: Homes Versus Erosion

Future Toe of Bank

Calculation of Stream Danger Zone

Set Back = Maintenance + Lateral Migration + ((Hs + Deg)/Tan SA)-(Hs+Deg)/Tan A))

Setbacks: EROSION HAZARD ZONE

+	Station	Austin	Method 2
	17649	78.57834	78.84131
	17410	78.41809	78.46707
	17197	77.19443	77.53915
	16956	76.66982	76.96215
	16702	74.47691	75.45213
	16501	72.43938	74.091
	16294	69.70878	72.34154
	15983	67.39179	70.69505
	15671	65.23263	69.13416
	15359	63.43347	67.77124
	15238	62.57008	67.15158
	15050	60.60084	65.84357
	14973	60.35323	65.61522
	14819	59.178	64.78457
	14706	58.37202	64.20606
	14425	57.00034	63.11534
	14137	55.69342	62.05185
	13942	54.90895	61.38701
	13768	54.29018	60.83843
	13646	53.70461	60.37036
	13307	52.60668	59.36075
	13144	52.29186	58.99249
	12970	51.9931	58.6199
	12654	51.34523	57.88533
T	12551	51.16102	57.66072
	12046	49.18173	55.96771

Summary of Corridor EHZ

Options Being Considered:

1

Buyback (\$1) Reroute river away homes (\$.2)

2

Bank Protection (bendway weirs) (\$.02)

3

Design Engineering

Inherent that we need to Protect Stream Riparian Corridors Prior to Urbanization

In riverine environments, by the year 2100, the relative increase in the median estimates of the 1 percent annual chance floodplain (floodplain) depth and area (Special Flood Hazard Area or SFHA) is projected to average about 45% across the nation, with very wide regional variability. FEMA (2013)

