Understanding Stream Processes and Ripartan Function

and Conselles and and

OBJECTIVES

Basic stream processes
Watershed and stream relationships
Stream, floodplain & riparian management

What do rivers want to do?

Functions of a Stream

Transport water

Transport & deposit sediment

Transport & replenish nutrients

 Biological functions(food, shelter, shading, movement, etc.)

Many Universal Similarities

Carry Waiter (Generalte Energy)

Respond to Energy (Erosion and Deposition)

3. Kinds and Amounts of Vegetation

Cowboy Hydrology Fluvial Geomorphology for Dummies

Soil

Water

The Key to the Rosgen Classification of Natural Rivers

reaches, values of Entrenchment and Sinuosity ratios can vary by +/- 0.2 units; while values for Width / Depth ratios can vary by +/- 2.0 units.

© Wildland Hydrology 1481 Stevens Lake Road Pagosa Springs, CO 81147 (970) 731-6100 e-mail: wildlandhydrology@pagosa.net

Lane's Relationship, 1950

Walla Walla River, 1964

Lesson 1: Creeks do not want to be wide and straight

The patterns of rivers are naturally developed to dissipate the energy of the moving water and to transport sediment. The meander geometry and associated riffles and pools adjust to keep the system operating efficiently.

Lesson 2:

Floodplains Dissipate Energy and Trap Sediment

Low velocity water

Floodplain

Large Wood Dissipates Energy

Large Wood Helps to Build Floodplains and Channels

1,540 years *BP

9,450 years *BP

2,476 years BP*

*BP= Before Present (ref. AD 1950)

The Temporal Distribution and Carbon Storage of Large Oak Wood in Streams and Floodplain Deposits Richard P. Guyette, Daniel C. Dey, and Michael C. Stambaugh

Lesson 3: Flooding Recharges Water Tables

Excessive Erosion Enlarges the Channel

Lesson 5: Down-cutting Drains the Water Table

Lesson 6: Down-cutting: Lose Access to Floodplain

Lesson 7: The Water Table Sustains Base Flow

Riparian Sponge

Lesson 8: Channel Widening Reduces the Riparian Sponge

Overly Wide Channels Reduce Sediment Transport Ability

Lesson 10: Degraded and eroded channels can be restored

Natural Channel Restoration

Bear Creek

1977

and the second second

