Assessment of Riparian Zones with a Naïve Bayes Classifier

Aaron Richter Ana Gonzalez

City of Austin Watershed Protection Department

Environmental Index

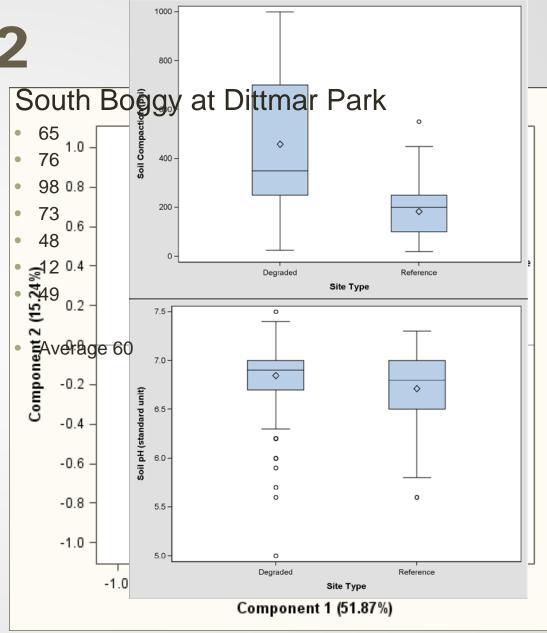
Quantifiable measure of the environment

Watershed Protection Indices

- Environmental Integrity Index
- Austin Lake Index
- Index of Riparian Integrity
- Riparian Functional Assessment
- Stream Stability Index

Riparian Functional Assessment

Measures the environmental functionality of


a riparian zone

RFA 2012

Parameters

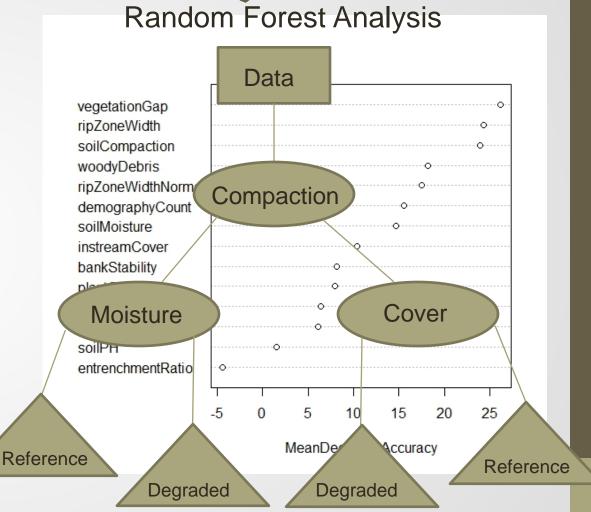
- Soil Compaction
- Soil Moisture
- In-stream Canopy Cover
- Plant Cover & Structural Diversity
- Recruitment & Succession
- Riparian Zone Width
- Hardwood Demography
- Large Woody Debris
- Bank Stability
- Diatom Taxonomy
- Entrenchment Ratio
- Macroalgae cover
- Rip Zone Width/ Potential Tree Height
- Soil pH
- Vegetation Gaps

Problems with Indices

Multiple Metric Averaging

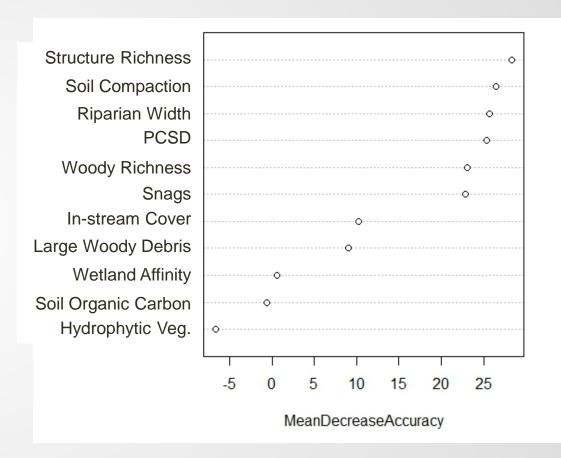
Compaction 95
Moisture 50
Instream Cover 5

Defining "Environmental Health"


Interpretation is Difficult

Compaction 55
Moisture 50
Instream Cover 45

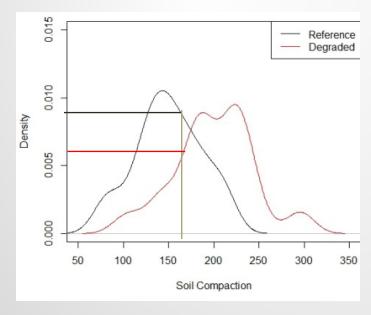
RFA (version2.0) 2014


- Soil Compaction
- Soil Moisture
- In-stream Canopy Cover
- Plant Cover & Structural Diversity
- Recruitment & Succession
- Riparian Zone Width
- Hardwood Demography
- Large Woody Debris
- Bank Stability
- Diatom Taxonomy
- Entrenchment Ratio
- Macroalgae cover
- Rip Zone Width/ Potential Tree Height
- Soil pH
- Vegetation Gaps

RFA (version2.0) 2014

Parameters

- Soil Compaction
- Soil Mogistruice Carbon
- In-stream Canopy Cover
- Plant Cover & Structural Diversity
- Riparian Zone Width
- Large Woody Debris
- Baadysood Demography
- Recordition petites Richness
- Streetse Pichness
- Patko Prahility egetation
- Dietemateseematinity
- Entrenchment Ratio
- S Macroalgae cover
- ZoRip Zone Width/ Potential He Tree Height
- SoSpHpH
- Vegetation Gaps



Naïve Bayes Classifier

How do we define "Environmental Health":

Probability of a site to be classified as 'Reference' given the environmental parameters measured.

$$P(c_{ref}|x) = \frac{\prod_{j=1}^{N} P(x_{j}|c_{ref})}{\prod_{j=1}^{N} P(x_{j}|c_{ref}) + \prod_{j=1}^{N} P(x_{j}|c_{deg})}$$

Soil Compaction = 164

$$P(x|c_{ref}) = 0.00883$$

 $P(x|c_{deg}) = 0.00552$
 $P(c_{ref}|x) = 0.615$

Naïve Bayes Classifier

No more Multiple Metric Averaging

	Log(Reference)	Log(Degraded)	Sum	RFA
Compaction	-2.452	-2.042		
Structure Richness	-0.566	-0.212		
PCSD	-2.064	-1.977		
Snags	-1.825	-0.791		
Woody Species Richness	-1.042	-1.017		
Exp(Sum)	0.000353	0.00239	0.00274	0.13

