Does ecotypic-based genetic diversity improve productivity? A mesocosm study with Spartina alterniflora

Courtney T. Lee and Anna R. Armitage Texas A&M University at Galveston M.S. Student-Department of Marine Biology

Background

- Plant species diversity relates to ecosystem characteristics
- Does plant genetic diversity confer the same advantages as plant species diversity?
- Address this to improve restoration?

Introduction

Methods

Results

Background

- **Species level**: biomass and resource utilization
- **Community level**: animal response
- **Ecosystem level**: enhanced stability and resilience
- Climate Stress: intensity and prevalence

Introduction Methods

Results

Application

- Salt marsh systems
 - Dominant species: Spartina alterniflora
 - Gulf and East coasts
 - Highly productive
 - Restoration

- Genotypes and ecotypes displayed unique differences
 - Plant canopy characteristics
 - Community assemblages

Introduction

Methods

Results

Application

- Not addressed in restoration success or monitoring
- Typically only one donor source is used
 - Limited standing genetic diversity
 - Hinders population fitness
- Creation of new cultivars
- Goal to create seed stock
- Manipulate genetic diversity of restored S. alterniflora
 - Productivity
 - Stability
 Introduction

Methods

Results

Objective

- Understand differences between Spartina alterniflora
 growth and canopy features
 - Low and high genetic diversity
 - Range of natural salinities

Introduction

Methods

Results

Methods

- Collected sprigs of Spartina alterniflora
- Three ecotypes from northeast Texas Coast
- Planted monocultures and polycultures

S. alterniflora sprig

Monoculture and polyculture combinations in a single replicate

Introduction

Methods

Results

Methods

- June-October 2012
- Compared growth patterns
 - Stem density
 - Stem height
 - Stem growth
 - Number of leaves
 - Chlorophyll a production
 - Inflorescence density
 - Root biomass
- Averaged monocultures and polycultures at each salinity

Introduction

Methods

Results

Polycultures grew more than monocultures, but as salinity increased, stem growth decreased

Polycultures outperformed monocultures at 10 & 30 ppt; as salinities increased, leaf number increased

Polycultures outperformed monocultures at 20 & 30 ppt; as salinities increased, root biomass increased

Discussion

- Polyculture had better performance at highest salinity:
 - Augmented leaf level processes
 - Greater belowground biomass

Introduction

- Limited aboveground production
- Increasing genetic diversity at the ecotype level
 - Might be an efficient way to improve restored plant success
 - Might be a proactive method in restoration to tolerate stresses

Acknowledgements

- Funding by Texas General Land Office, Texas Parks and Wildlife Department, Mooney Travel Grant, Galveston Graduate Student Association Mini Grant, and TAMUG MARB department.
- Coastal and Wetlands Ecology Laboratory for field help.
- National Wildlife Refuge at Texas Point and Texas Parks and Wildlife Department at Port O'Connor for allowing plant collections.
- Pictures courtesy of the Coastal and Wetlands Ecology Lab and Bill Dailey

Questions